Pointwise estimates of weighted Bergman kernels in several complex variables

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bergman projections on weighted Fock spaces in several complex variables

Let ϕ be a real-valued plurisubharmonic function on [Formula: see text] whose complex Hessian has uniformly comparable eigenvalues, and let [Formula: see text] be the Fock space induced by ϕ. In this paper, we conclude that the Bergman projection is bounded from the pth Lebesgue space [Formula: see text] to [Formula: see text] for [Formula: see text]. As a remark, we claim that Bergman projecti...

متن کامل

Weighted Bergman kernels on orbifolds

We describe a notion of ampleness for line bundles on orbifolds with cyclic quotient singularities that is related to embeddings in weighted projective space, and prove a global asymptotic expansion for a weighted Bergman kernel associated to such a line bundle.

متن کامل

Weighted Bergman Kernels and Quantization

Let Ω be a bounded pseudoconvex domain in C N , φ, ψ two positive functions on Ω such that − logψ,− log φ are plurisubharmonic, z ∈ Ω a point at which − log φ is smooth and strictly plurisubharmonic, and M a nonnegative integer. We show that as k → ∞, the Bergman kernels with respect to the weights φkψM have an asymptotic expansion KφkψM (x, y) = kN πNφ(x, y)kψ(x, y)M ∞ ∑ j=0 bj(x, y) k −j , b0...

متن کامل

A Priori Estimates in Several Complex Variables

Classically there are two points of view in the study of global existence problems in the theory of functions of a complex variable. One is to piece together local solutions (such as power series), always staying within the category of holomorphic functions. This method seems to have been initiated by Weierstrass; in the theory of several complex variables it has been implemented by the study o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2015

ISSN: 0001-8708

DOI: 10.1016/j.aim.2015.06.024